Background: Self-complementary adeno-associated virus (scAAV) vectors have become a desirable vector for therapeutic gene transfer due to their ability to produce greater levels of transgene than single-stranded AAV (ssAAV). However, recent reports have suggested that scAAV vectors are more immunogenic than ssAAV. In this study, we investigated the effects of a self-complementary genome during gene therapy with a therapeutic protein, human factor IX (hF.IX).
Methods: Hemophilia B mice were injected intramuscularly with ss or scAAV1 vectors expressing hF.IX. The outcome of gene transfer was assessed, including transgene expression as well as antibody and CD8⁺ T cell responses to hF.IX.
Results: Self-complementary AAV1 vectors induced similar antibody responses (which eliminated systemic hF.IX expression) but stronger CD8⁺ T cell responses to hF.IX relative to ssAAV1 in mice with F9 gene deletion. As a result, hF.IX-expressing muscle fibers were effectively eliminated in scAAV-treated mice. In contrast, mice with F9 nonsense mutation (late stop codon) lacked antibody or T cell responses, thus showing long-term expression regardless of the vector genome.
Conclusions: The nature of the AAV genome can impact the CD8⁺ T cell response to the therapeutic transgene product. In mice with endogenous hF.IX expression, however, this enhanced immunogenicity did not break tolerance to hF.IX, suggesting that the underlying mutation is a more important risk factor for transgene-specific immunity than the molecular form of the AAV genome.