In dairy cows, an increase in plasma concentration of glucose-dependent insulinotropic polypeptide (GIP) is associated with an increase in metabolizable energy intake, but the role of GIP in energy partitioning of dairy cattle is not certain. The objective of this study was to examine the relationship between plasma GIP concentrations and energy partitioning toward milk production. Four mid-lactation, primiparous, rumen-fistulated Holstein-Friesian cows were fed a control diet of 55% forage and 45% concentrate [dry matter (DM) basis] in a 4×4 Latin square design with 4-wk periods. The 4 treatments were (1) control diet fed at 1000 and 1600h, and (2) once-daily (1000h) feeding, (3) twice-daily (1000 and 1600h) feeding, and (4) 4 times/d (1000, 1600, 2200 and 0400h) feeding of the control diet plus 1 dose (1.75kg on a DM basis at 0955h) into the rumen of supplemental vegetable proteins (Amino Green; SCA NuTec Ltd., Thirsk, UK). Measurements of respiratory exchange and energy balance were obtained over 4d during the last week of each period while cows were housed in open-circuit respiration chambers. Blood was collected from the jugular vein every 30min for 12h, using indwelling catheters, starting at 0800h on d 20 of each period. Plasma GIP concentration was measured in samples pooled over each 5 consecutive blood samplings. The relationships between plasma GIP, DM intake, heat production, respiratory quotient (RQ), milk yield, and milk energy output were analyzed using linear correlation procedures, with metabolizable intake as a partial variant. Plasma GIP concentration was not correlated with heat production, or milk yield, but was positively correlated with milk energy yield (correlation coefficient=0.67) and negatively correlated with RQ (correlation coefficient=-0.72). The correlations between GIP with RQ and milk energy output do not imply causality, but support a role for GIP in the regulation of energy metabolism in dairy cows.
Keywords: dairy cow; energy partitioning; glucose-dependent insulinotropic polypeptide; milk energy output.
Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.