Adoptive T cell transfer is a potentially effective strategy for treating cancer and viral infections. However, previous studies of cancer immunotherapy have shown that T cells expanded in vitro fall into an exhausted state and, consequently, have limited therapeutic effect. One way to overcome this obstacle is to use induced pluripotent stem cells (iPSCs) as a cell source for making effector T cells. In recent years, there have been several reports on generating effector T cells suitable for adoptive immunotherapy. The reported findings suggest that using iPSC technology, it may be possible to stably derive large numbers of juvenile memory T cells targeted to cancers or viruses. In this review, we describe a strategy for applying iPSC technology to immunotherapy and the characteristics of T cells derived from iPSCs. We also discuss how these technologies can be applied clinically in the future.