Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current

Opt Express. 2013 Nov 18;21(23):28072-82. doi: 10.1364/OE.21.028072.

Abstract

Design, fabrication, and characterization of an asymmetric metal-semiconductor-metal photodetector, based on internal photoemission effect and integrated into a silicon-on-insulator waveguide, are reported. For this photodetector, a responsivity of 4.5 mA/W has been measured at 1550 nm, making it suitable for power monitoring applications. Because the absorbing metal is deposited strictly around the vertical output facet of the waveguide, a very small contact area of about 3 µm2 is obtained and a transit-time-limited bandwidth of about 1 GHz is demonstrated. Taking advantage of this small area and electrode asymmetry, a significant reduction in the dark current (2.2 nA at -21 V) is achieved. Interestingly, applying reverse voltage, the photodetector is able to tune its cut-off wavelength, extending its range of application into the MID infrared regime.

Publication types

  • Research Support, Non-U.S. Gov't