Sodium-glucose co-transporter (SGLT) inhibitors are a novel class of therapeutic agents for the treatment of type 2 diabetes by preventing renal glucose reabsorption. In our efforts to identify novel inhibitors of SGLT, we synthesized a series of l-rhamnose derived acyclic C-nucleosides with 1,2,3-triazole core. The key β-ketoester building block 4 prepared from l-rhamnose in five steps, was reacted with various aryl azides to produce the respective 1,2,3-triazole derivatives in excellent yields. Deprotection of acetonide group gave the desired acyclic C-nucleosides 7a-o. All the new compounds were screened for their sodium-glucose co-transporters (SGLT1 and SGLT2) inhibition activity using recently developed cell-based nonradioactive fluorescence glucose uptake assay. Among them, 7m with IC50: 125.9nM emerged as the most potent SGLT2 inhibitor. On the other hand compound 7d exhibited best selectivity for inhibition of SGLT2 (IC50: 149.1nM) over SGLT1 (IC50: 693.2nM). The results presented here demonstrated the utility of acyclic C-nucleosides as novel SGLT inhibitors for future investigations.
Keywords: Click chemistry; Diabetes; Rhamnose; SGLT2 inhibitors; Triazole.
Copyright © 2014 Elsevier Ltd. All rights reserved.