Background: Targeted recruitment of chromatin-modifying enzymes to clusters of CpG dinucleotides contributes toward the formation of accessible chromatin. By interprimate comparison we previously identified the set of nonpolymorphic human-specific CpGs (CpG 'beacons') and revealed that these loci were enriched for human disease traits. Due to their human-specific CpG density change, extreme CpG 'beacon' clusters (≥20 CpG beacons/kb) were predicted to identify permissive chromatin peaks within the human genome.
Aim: We set out to explore these sequence-defined regions for evidence of an active chromatin signature.
Results: Using available comparative primate epigenomic data from neurons of the prefrontal cortex, we show that these CpG 'beacon' clusters are indeed enriched for being human-specific H3K4me3 peaks (χ(2): p < 2.2 × 10(-16)) and thus predictive of permissive chromatin states. These sequence regions had a higher predictive value than previous selective analyses. We also show that both human-specific H3K4me3 and CpG 'beacon' clusters are increased within current and ancestral telomeric regions, supporting an association with recombination, which is higher towards the distal ends of chromosomes.
Conclusion: Therefore, CpG-focused comparative sequence analysis can precisely pinpoint chromatin structures that contribute to the human-specific phenotype and further supports an integrated approach in genomic and epigenomic studies.