Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

Nano Lett. 2014;14(4):1790-6. doi: 10.1021/nl404352a. Epub 2014 Mar 12.

Abstract

Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO2 depends on TiO2 dimensionality. The injection into a TiO2 QD is adiabatic due to strong donor-acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor-acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbant breaks symmetry of delocalized TiO2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. However, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.