Xenogenic fetal neuroblasts are considered as a potential source of transplantable cells for the treatment of neurodegenerative diseases, but immunological barriers limit their use in the clinic. While considerable work has been performed to decipher the role of the cellular immune response in the rejection of intracerebral xenotransplants, there is much still to learn about the humoral reaction. To this end, the IgG response to the transplantation of fetal porcine neural cells (PNC) into the rat brain was analyzed. Rat sera did not contain preformed antibodies against PNC, but elicited anti-porcine IgG was clearly detected in the host blood once the graft was rejected. Only the IgG1 and IgG2a subclasses were up-regulated, suggesting a T-helper 2 immune response. The main target of these elicited IgG antibodies was porcine neurons, as determined by double labeling in vitro and in vivo. Complement and anti-porcine IgG were present in the rejecting grafts, suggesting an active role of the host humoral response in graft rejection. This hypothesis was confirmed by the prolonged survival of fetal porcine neurons in the striatum of immunoglobulin-deficient rats. These data suggest that the prolonged survival of intracerebral xenotransplants relies on the control of both cell-mediated and humoral immune responses.
Keywords: Antibodies; humoral rejection; knockout; neural grafts; xenotransplantation.
© Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.