Normal human melanocytes, unlike malignant melanoma cells, required at least three growth-promoting agents, i.e., phorbol ester for protein kinase C activation and the growth factors basic fibroblast growth factor (bFGF) and insulin, for growth in chemically defined W489 medium. Cell growth was further stimulated by addition of agents that increase intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP) to the medium. Among these agents, the pituitary hormones alpha-melanocyte-stimulating hormone (alpha-MSH) and follicle-stimulating hormone were the most potent, whereas bacterial toxins, including cholera, tetanus, and pertussis toxin and their subunits either were less mitogenic or gave variable results depending on the culture tested. Medium containing phorbol ester PMA, growth factors bFGF and insulin (or insulin-like growth factor-I), and synthetic alpha-MSH supported melanocyte growth for more than 5 months with doubling times between 5 and 8 days. Two copper-binding proteins, ceruloplasmin and tyrosinase, were mitogenic when added to medium and ceruloplasmic induced a long bi- to tripolar-shape of cells. Addition of 1 mM dibutyryl cAMP to the medium led to the formation of dendrites in all cells, with an average of 28 extensions per cell. Although cell growth was inhibited by dibutyryl cAMP, cells were not terminally differentiated and continued to proliferate. Dendritic melanocytes showed a 2.2-fold increase in activity of the tyrosine kinase pp60c-src. The induction of dendritic processes in melanocytes by dibutyryl cAMP or sodium butyrate was reversible and appears to reflect the expression of the mature melanocytic phenotype in situ.