Observer reliability of arteriovenous malformations grading scales using current imaging modalities

J Neurosurg. 2014 May;120(5):1179-87. doi: 10.3171/2014.2.JNS131262. Epub 2014 Mar 14.

Abstract

Object: The aim of this study was to examine observer reliability of frequently used arteriovenous malformation (AVM) grading scales, including the 5-tier Spetzler-Martin scale, the 3-tier Spetzler-Ponce scale, and the Pollock-Flickinger radiosurgery-based scale, using current imaging modalities in a setting closely resembling routine clinical practice.

Methods: Five experienced raters, including 1 vascular neurosurgeon, 2 neuroradiologists, and 2 senior neurosurgical residents independently reviewed 15 MRI studies, 15 CT angiograms, and 15 digital subtraction angiograms obtained at the time of initial diagnosis. Assessments of 5 scans of each imaging modality were repeated for measurement of intrarater reliability. Three months after the initial assessment, raters reassessed those scans where there was disagreement. In this second assessment, raters were asked to justify their rating with comments and illustrations. Generalized kappa (κ) analysis for multiple raters, Kendall's coefficient of concordance (W), and interclass correlation coefficient (ICC) were applied to determine interrater reliability. For intrarater reliability analysis, Cohen's kappa (κ), Kendall's correlation coefficient (tau-b), and ICC were used to assess repeat measurement agreement for each rater.

Results: Interrater reliability for the overall 5-tier Spetzler-Martin scale was fair to good (ICC = 0.69) to extremely strong (Kendall's W = 0.73) on initial assessment and improved on reassessment. Assessment of CT angiograms resulted in the highest agreement, followed by MRI and digital subtraction angiography. Agreement for the overall 3-tier Spetzler-Ponce grade was fair to good (ICC = 0.68) to strong (Kendall's W = 0.70) on initial assessment, improved on reassessment, and was comparable to agreement for the 5-tier Spetzler-Martin scale. Agreement for the overall Pollock-Flickinger radiosurgery-based grade was excellent (ICC = 0.89) to extremely strong (Kendall's W = 0.81). Intrarater reliability for the overall 5-tier Spetzler-Martin grade was excellent (ICC > 0.75) in 3 of the 5 raters and fair to good (ICC > 0.40) in the other 2 raters.

Conclusion: The 5-tier Spetzler-Martin scale, the 3-tier Spetzler-Ponce scale, and the Pollock-Flickinger radiosurgery-based scale all showed a high level of agreement. The improved reliability on reassessment was explained by a training effect from the initial assessment and the requirement to defend the rating, which outlines a potential downside for grades determined as part of routine clinical practice to be used for scientific purposes.

MeSH terms

  • Angiography, Digital Subtraction
  • Cerebral Angiography*
  • Humans
  • Intracranial Arteriovenous Malformations / diagnosis*
  • Intracranial Arteriovenous Malformations / diagnostic imaging
  • Intracranial Arteriovenous Malformations / pathology
  • Magnetic Resonance Imaging*
  • Observer Variation
  • Reproducibility of Results