We study a new type of three-dimensional topological superconductor that exhibits Majorana zero modes (MZM) protected by a magnetic group symmetry, a combined antiunitary symmetry composed of a mirror reflection and time reversal. This new symmetry enhances the noninteracting topological classification of a superconducting vortex from Z2 to Z, indicating that multiple MZMs can coexist at the end of one magnetic vortex of unit flux. Especially, we show that a vortex binding two MZMs can be realized on the (001) surface of a topological crystalline insulator SnTe with proximity induced BCS Cooper pairing, or in bulk superconductor InxSn1-xTe.