Salmonella infections affect millions worldwide and remain a significant cause of morbidity and mortality. It is known from mouse studies that CD4 T cells are essential mediators of immunity against Salmonella infection, yet it is not clear whether targeting CD4 T cell responses directly with peptide vaccines against Salmonella can be effective in combating infection. Additionally, it is not known whether T cell responses elicited against Salmonella secreted effector proteins can provide protective immunity against infection. In this study, we investigated both of these possibilities using prime-boost immunization of susceptible mice with a single CD4 T cell peptide epitope from Salmonella secreted effector protein I (SseI), a component of the Salmonella type III secretion system. This immunization conferred significant protection against lethal oral infection, equivalent to that conferred by whole heat-killed Salmonella bacteria. Surprisingly, a well-characterized T cell epitope from the flagellar protein FliC afforded no protection compared to immunization with an irrelevant control peptide. The protective response appeared to be most associated with polyfunctional CD4 T cells raised against the SseI peptide, since no antibodies were produced against any of the peptides and very little CD8 T cell response was observed. Overall, this study demonstrates that eliciting CD4 T cell responses against components of the Salmonella type III secretion system can contribute to protection against infection and should be considered in the design of future Salmonella subunit vaccines.