Acidic organelles form an important intracellular Ca(2+) pool that can drive global Ca(2+) signals through coupling with endoplasmic reticulum (ER) Ca(2+) stores. Recently identified lysosome-ER membrane contact sites might allow formation of Ca(2+) microdomains, although their size renders observation of Ca(2+) dynamics impractical. Here, we generated a computational model of lysosome-ER coupling that incorporated a previous model of the inositol trisphosphate (IP3) receptor as the ER Ca(2+) 'amplifier' and lysosomal leaks as the Ca(2+) 'trigger'. The model qualitatively described global Ca(2+) responses to the lysosomotropic agent GPN, which caused a controlled but substantial depletion of small solutes from the lysosome. Adapting this model to physiological lysosomal leaks induced by the Ca(2+) mobilising messenger NAADP demonstrated that lysosome-ER microdomains are capable of driving global Ca(2+) oscillations. Interestingly, our simulations suggest that the microdomain [Ca(2+)] need not be higher than that in the cytosol for responses to occur, thus matching the relatively high affinity of IP3 receptors for Ca(2+). The relative distribution and overall density of the lysosomal leaks dictated whether microdomains triggered or modulated global signals. Our data provide a computational framework for probing lysosome-ER Ca(2+) dynamics.
Keywords: Ca2+; Computational modelling; Endoplasmic reticulum; Lysosomes; Membrane contact site; NAADP; Two-pore channel.
© 2014. Published by The Company of Biologists Ltd.