Objective: In HLA-B27-transgenic rats, the development of a disorder that mimics spondyloarthritis (SpA) is highly correlated with dendritic cell (DC) dysfunction. The present study was undertaken to analyze the underlying mechanisms of this via transcriptome analysis.
Methods: Transcriptome analysis of ex vivo-purified splenic CD103+CD4+ DCs from B27-transgenic rats and control rats was performed. Transcriptional changes in selected genes were confirmed by quantitative reverse transcriptase-polymerase chain reaction. A meta-analysis of our rat data and published data on gene expression in macrophages from ankylosing spondylitis (AS) patients was further performed.
Results: Interferon (IFN) signaling was the most significantly affected pathway in DCs from B27-transgenic rats; the majority of genes connected to IFN were underexpressed in B27-transgenic rats as compared to controls. This pattern was already present at disease onset, persisted over time, and was conserved in 2 disease-prone B27-transgenic rat lines. In DCs from B27-transgenic rats, we further found an up-regulation of suppressor of cytokine signaling 3 (which may account for reverse IFN signaling) and a down-regulation of interleukin-27 (a cytokine that opposes Th17 differentiation and promotes Treg cells). The meta-analysis of data on conventional DCs from rats and data on monocyte-derived macrophages from humans revealed 7 IFN-regulated genes that were negatively regulated in both human and rat SpA (i.e., IRF1, STAT1, CXCL9, CXCL10, IFIT3, DDX60, and EPSTI1).
Conclusion: Our results suggest that expression of HLA-B27 leads to a defect in IFNγ signaling in antigen-presenting cells in both B27-transgenic rats and SpA patients, which may result in Th17 expansion and Treg cell alteration (as shown in B27-transgenic rats) and contribute to disease pathogenesis.
Copyright © 2014 by the American College of Rheumatology.