Random number generation (RNG) is a procedurally-simple task related to specific executive functions, such as updating and monitoring of information and inhibition of automatic responses. The effect of practice on executive functions has been widely investigated, however little is known on the impact of practice on RNG. Transcranial direct current stimulation (tDCS) allows to modulate, non-invasively, brain activity and to enhance the effects of training on executive functions. Hence, this study aims to investigate the effect of practice on RNG and to explore the possibility to influence it by tDCS applied over dorsolateral prefrontal cortex. Twenty-six healthy volunteers have been evaluated within single session and between different sessions of RNG using several measures of randomness, which are informative of separable cognitive components servicing random behavior. We found that repetition measures significantly change within single session, seriation measures significantly change both within and between sessions, while cycling measures are not affected by practice. tDCS does not produce any additional effect, however a sub-analysis limited to the first session revealed an increasing trend in seriation measure after anodal compared to cathodal stimulation. Our findings support the hypothesis that practice selectively and consistently influences specific cognitive components related to random behavior, while tDCS transiently affects RNG performance.
Keywords: Brain stimulation; Cognitive plasticity; Executive functions; Practice; Random number generation; tDCS.
Copyright © 2014 Elsevier Inc. All rights reserved.