Toll-like receptor (TLR) ligands are attractive candidate adjuvants for therapeutic cancer vaccines, since TLR signaling stimulates and tunes both humoral and cellular immune responses induced by dendritic cells (DCs). Given that human skin contains a dense network of DCs, which are easily accessible via (intra-)dermal delivery of vaccines, skin is actively explored as an antitumor vaccination site. Here we used a human skin explant model to explore the potential of TLR ligands as adjuvants for DC activation in their complex microenvironment. We show that topical application of Aldara skin cream, 5% of which comprises the TLR7 agonist imiquimod, significantly enhanced DC migration as compared with that resulting from intradermal injection of the TLR7/8 ligand R848 or the soluble form of imiquimod. Moreover, Aldara-treated DCs showed highest levels of the costimulatory molecules CD86, CD83, CD40, and CD70. Topical Aldara induced the highest production of pro-inflammatory cytokines in skin biopsies. When combined with intradermal peptide vaccination, Aldara-stimulated DCs showed enhanced cross-presentation of the melanoma antigen MART-1, which resulted in increased priming and activation of MART-1-specific CD8(+) T cells. These results point to advantageous effects of combining the topical application of Aldara with antitumor peptide vaccination.
Keywords: Adjuvants; Aldara; Cross-presentation; DCs; Human skin; T-cell priming.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.