Etiology of the membrane potential of rat white fat adipocytes

Am J Physiol Endocrinol Metab. 2014 Jul 15;307(2):E161-75. doi: 10.1152/ajpendo.00446.2013. Epub 2014 May 27.

Abstract

The plasma membrane potential (Vm) is key to many physiological processes; however, its ionic etiology in white fat adipocytes is poorly characterized. To address this question, we employed the perforated patch current clamp and cell-attached patch clamp methods in isolated primary white fat adipocytes and their cellular model 3T3-L1. The resting Vm of primary and 3T3-L1 adipocytes were -32.1 ± 1.2 mV (n = 95) and -28.8 ± 1.2 mV (n = 87), respectively. Vm was independent of cell size and fat content. Elevation of extracellular K(+) to 50 mM by equimolar substitution of bath Na(+) did not affect Vm, whereas substitution of bath Na(+) with the membrane-impermeant cation N-methyl-D-glucamine(+)-hyperpolarized Vm by 16 mV, data indicative of a nonselective cation permeability. Substitution of 133 mM extracellular Cl(-) with gluconate-depolarized Vm by 25 mV, whereas Cl(-) substitution with I(-) caused a -9 mV hyperpolarization. Isoprenaline (10 μM), but not insulin (100 nM), significantly depolarized Vm. Single-channel ion activity was voltage independent; currents were indicative for Cl(-) with an inward slope conductance of 16 ± 1.3 pS (n = 11) and a reversal potential close to the Cl(-) equilibrium potential, -29 ± 1.6 mV. Although the reduction of extracellular Cl(-) elevated the intracellular Ca(2+) of adipocytes, this was not as large as that produced by elevation of extracellular K(+). In conclusion, the Vm of white fat adipocytes is well described by the Goldman-Hodgkin-Katz equation with a predominant permeability to Cl(-), where its biophysical and single-channel properties suggest a volume-sensitive anion channel identity. Consequently, changes in serum Cl(-) homeostasis or the adipocyte's permeability to this anion via drugs will affect its Vm, intracellular Ca(2+), and ultimately its function and its role in metabolic control.

Keywords: 3T3-L1 cells; adipocyte; chloride; membrane potential; white fat.

MeSH terms

  • 3T3-L1 Cells
  • Adipocytes, White / cytology
  • Adipocytes, White / physiology*
  • Adipogenesis / physiology
  • Animals
  • Cell Differentiation
  • Cell Size
  • Cells, Cultured
  • Male
  • Membrane Potentials*
  • Mice
  • Rats
  • Rats, Sprague-Dawley
  • Rats, Wistar