We describe a new generation of algorithms capable of mapping the structure and conformations of macromolecules and their complexes from large ensembles of heterogeneous snapshots, and demonstrate the feasibility of determining both discrete and continuous macromolecular conformational spectra. These algorithms naturally incorporate conformational heterogeneity without resort to sorting and classification, or prior knowledge of the type of heterogeneity present. They are applicable to single-particle diffraction and image datasets produced by X-ray lasers and cryo-electron microscopy, respectively, and particularly suitable for systems not easily amenable to purification or crystallization.
Keywords: X-ray lasers; cryo-electron microscopy; dimensionality reduction; macromolecular conformations; macromolecular structure; manifold embedding.