Light not only entrains the circadian system but also has acute effects on physiology and behavior, a phenomenon known as masking. Behavioral masking responses to bright light differ in diurnal and nocturnal species, such that light increases arousal in the former and decreases it in the latter. Comparisons made within a species that displays both diurnal and nocturnal patterns of behavior may provide insight into how masking differs between chronotypes and the association between mechanisms controlling masking and the circadian drive for activity. Nile grass rats (Arvicanthis niloticus) provide a useful model for studying such issues because when these animals are housed with running wheels, some run primarily during day, while others run at night. Here we compared behavioral masking responses to 2-h pulses of light and darkness given across a 12:12 light/dark cycle in day-active (DA) and night-active (NA) grass rats. Both wheel-running activity (WRA) and general activity (GA) were monitored. Light pulses at night tended to increase both WRA and GA overall in the DA grass rats, while in NA grass rats, light pulses significantly reduced WRA but had no effect on GA. Dark pulses during the day tended to decrease both WRA and GA in the DA grass rats, while in the NA grass rats, they tended to increase WRA in the early day but had no effect on GA overall. Next, we measured cFos expression within 2 brain areas potentially involved in masking, the intergeniculate leaflet (IGL) and the olivary pretectal area (OPT), of DA and NA grass rats either sacrificed on a control night or after a 1-h light pulse at ZT14. In DA grass rats, light at ZT14 induced cFos in the IGL and OPT, whereas in NA grass rats, cFos levels in both structures were high at ZT14 and were not altered by a 1-h light pulse. Overall, these results suggest that masking responses to light and darkness are dependent on the chronotype of the individual and that the responsiveness of the IGL and OPT to light may depend on or contribute to the behavioral response of these animals.
Keywords: cFos; chronotype; grass rats; intergeniculate leaflet; light; masking; olivary pretectal area; running wheel.
© 2014 The Author(s).