Arachidonic acid metabolism in isolated pancreatic islets. V. The enantiomeric composition of 12-hydroxy-5,8,10,14-eicosatetraenoic acid indicates synthesis by a 12-lipoxygenase rather than a monooxygenase

Biochim Biophys Acta. 1989 Jan 23;1001(1):16-24. doi: 10.1016/0005-2760(89)90301-9.

Abstract

Recent evidence indicates that the arachidonate metabolite 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) or its precursor may act as a second messenger in stimulus-response coupling in a variety of cells including Aplysia neurons, adrenal glomerulosa cells, and pancreatic islets. The compound 12(S)-HETE is generated from the precursor 12(S)-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12(S)-HPETE), which is a product of the 12-lipoxygenase enzyme. Some cells have recently been found to produce the enantiomer 12(R)-HETE, apparently via a cytochrome P-450 monooxygenase, and the biologic actions of 12(R)-HETE and 12(S)-HETE differ. We have examined the stereochemistry of 12-HETE from isolated pancreatic islets both radiochemically and by a new mass spectrometric method capable of quantitating subnanogram amounts of 12-HETE stereoisomers. Endogenous 12-HETE from islets was found to be exclusively the S-isomer. D-Glucose stimulated both insulin secretion and islet accumulation of 12(S)-HETE but not of 12(R)-HETE. Pharmacologic inhibition of islet 12-HETE biosynthesis also suppressed glucose-induced insulin secretion. These findings suggest that islet 12-HETE is a product of a 12-lipoxygenase rather than of a cytochrome P-450 monooxygenase and further implicate 12-lipoxygenase products in stimulus-secretion coupling.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid
  • Animals
  • Arachidonate 12-Lipoxygenase / metabolism*
  • Arachidonate Lipoxygenases / metabolism*
  • Arachidonic Acid
  • Arachidonic Acids / metabolism*
  • Chromatography, High Pressure Liquid
  • Glucose / pharmacology
  • Hydroxyeicosatetraenoic Acids / metabolism
  • Islets of Langerhans / metabolism*
  • Rats
  • Stereoisomerism

Substances

  • Arachidonic Acids
  • Hydroxyeicosatetraenoic Acids
  • Arachidonic Acid
  • 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid
  • Arachidonate Lipoxygenases
  • Arachidonate 12-Lipoxygenase
  • Glucose