There is an urgent need for new antituberculosis (anti-TB) drugs, including agents that are safe and effective with concomitant antiretrovirals (ARV) and first-line TB drugs. PA-824 is a novel antituberculosis nitroimidazole in late-phase clinical development. Cytochrome P450 (CYP) 3A, which can be induced or inhibited by ARV and antituberculosis drugs, is a minor (∼20%) metabolic pathway for PA-824. In a phase I clinical trial, we characterized interactions between PA-824 and efavirenz (arm 1), lopinavir/ritonavir (arm 2), and rifampin (arm 3) in healthy, HIV-uninfected volunteers without TB disease. Participants in arms 1 and 2 were randomized to receive drugs via sequence 1 (PA-824 alone, washout, ARV, and ARV plus PA-824) or sequence 2 (ARV, ARV with PA-824, washout, and PA-824 alone). In arm 3, participants received PA-824 and then rifampin and then both. Pharmacokinetic sampling occurred at the end of each dosing period. Fifty-two individuals participated. Compared to PA-824 alone, plasma PA-824 values (based on geometric mean ratios) for maximum concentration (Cmax), area under the concentration-time curve from 0 to 24 h (AUC0-24), and trough concentration (Cmin) were reduced 28%, 35%, and 46% with efavirenz, 13%, 17%, and 21% with lopinavir-ritonavir (lopinavir/r) and 53%, 66%, and 85% with rifampin, respectively. Medications were well tolerated. In conclusion, lopinavir/r had minimal effect on PA-824 exposures, supporting PA-824 use with lopinavir/r without dose adjustment. PA-824 exposures, though, were reduced more than expected when given with efavirenz or rifampin. The clinical implications of these reductions will depend upon data from current clinical trials defining PA-824 concentration-effect relationships. (This study has been registered at ClinicalTrials.gov under registration no. NCT01571414.).
Copyright © 2014, American Society for Microbiology. All Rights Reserved.