The disruption of Aβ homeostasis, which results in the accumulation of neurotoxic amyloids, is the fundamental cause of Alzheimer's disease (AD). Molecular chaperones play a critical role in controlling undesired protein misfolding and maintaining intricate proteostasis in vivo. Inspired by a natural molecular chaperone, an artificial chaperone consisting of mixed-shell polymeric micelles (MSPMs) has been devised with tunable surface properties, serving as a suppressor of AD. Taking advantage of biocompatibility, selectivity toward aberrant proteins, and long blood circulation, these MSPM-based chaperones can maintain Aβ homeostasis by a combination of inhibiting Aβ fibrillation and facilitating Aβ aggregate clearance and simultaneously reducing Aβ-mediated neurotoxicity. The balance of hydrophilic/hydrophobic moieties on the surface of MSPMs is important for their enhanced therapeutic effect.
Keywords: Alzheimer’s disease; amyloid β peptide; artificial chaperones; homeostasis; polymeric micelles.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.