Background: Specific noninvasive signal processing was applied to identify drivers in distinct categories of persistent atrial fibrillation (AF).
Methods and results: In 103 consecutive patients with persistent AF, accurate biatrial geometry relative to an array of 252 body surface electrodes was obtained from a noncontrast computed tomography scan. The reconstructed unipolar AF electrograms acquired at bedside from multiple windows (duration, 9±1 s) were signal processed to identify the drivers (focal or reentrant activity) and their cumulative density map. The driver domains were catheter ablated by using AF termination as the procedural end point in comparison with the stepwise-ablation control group. The maps showed incessantly changing beat-to-beat wave fronts and varying spatiotemporal behavior of driver activities. Reentries were not sustained (median, 2.6 rotations lasting 449±89 ms), meandered substantially but recurred repetitively in the same region. In total, 4720 drivers were identified in 103 patients: 3802 (80.5%) reentries and 918 (19.5%) focal breakthroughs; most of them colocalized. Of these, 69% reentries and 71% foci were in the left atrium. Driver ablation alone terminated 75% and 15% of persistent and long-lasting AF, respectively. The number of targeted driver regions increased with the duration of continuous AF: 2 in patients presenting in sinus rhythm, 3 in AF lasting 1 to 3 months, 4 in AF lasting 4 to 6 months, and 6 in AF lasting longer. The termination rate sharply declined after 6 months. The mean radiofrequency delivery to AF termination was 28±17 minutes versus 65±33 minutes in the control group (P<0.0001). At 12 months, 85% patients with AF termination were free from AF, similar to the control population (87%,); P=not significant.
Conclusions: Persistent AF in early months is maintained predominantly by drivers clustered in a few regions, most of them being unstable reentries.
Keywords: atrial fibrillation; mapping.
© 2014 American Heart Association, Inc.