Robust excitons inhabit soft supramolecular nanotubes

Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3367-75. doi: 10.1073/pnas.1408342111. Epub 2014 Aug 4.

Abstract

Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature's complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders' soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions--prerequisites for efficient energy transport--are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature's high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.

Keywords: exciton theory; light-harvesting antennae systems; photosynthesis; self-assembled excitonic nanoscale systems; supramolecular assembly.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbocyanines / chemistry
  • Coloring Agents / chemistry
  • Models, Theoretical
  • Nanotubes*

Substances

  • Carbocyanines
  • Coloring Agents