Impressive improvements in docking performance can be achieved by applying energy bonuses to poses in which glycan hydroxyl groups occupy positions otherwise preferred by bound waters. In addition, inclusion of glycosidic conformational energies allows unlikely glycan conformations to be appropriately penalized. A method for predicting the binding specificity of glycan-binding proteins has been developed, which is based on grafting glycan branches onto a minimal binding determinant in the binding site. Grafting can be used either to screen virtual libraries of glycans, such as the known glycome, or to identify docked poses of minimal binding determinants that are consistent with specificity data. The reviewed advances allow accurate modelling of carbohydrate-protein 3D co-complexes, but challenges remain in ranking the affinity of congeners.
Copyright © 2014 Elsevier Ltd. All rights reserved.