DNA topoisomerases are thought to play a critical role in transcription, replication and recombination as well as in the condensation and segregation of sister duplexes during cell division. Here, we used high-resolution two-dimensional agarose gel electrophoresis to study the replication intermediates and final products of small circular and linear minichromosomes of Saccharomyces cerevisiae in the presence and absence of DNA topoisomerase 2. The results obtained confirmed that whereas for circular minichromosomes, catenated sister duplexes accumulated in the absence of topoisomerase 2, linear YACs were able to replicate and segregate regardless of this topoisomerase. The patterns of replication intermediates for circular and linear YACs displayed significant differences suggesting that DNA supercoiling might play a key role in the modulation of replication fork progression. Altogether, this data supports the notion that for linear chromosomes the torsional tension generated by transcription and replication dissipates freely throughout the telomeres.