Synthesis and biological evaluation of podophyllotoxin congeners as tubulin polymerization inhibitors

Bioorg Med Chem. 2014 Oct 1;22(19):5466-75. doi: 10.1016/j.bmc.2014.07.031. Epub 2014 Jul 27.

Abstract

A series of new podophyllotoxin derivatives containing structural modifications at C-7, C-8, and C-9 were synthesized and evaluated for their cytotoxic activity against three human cancer cell lines. All the synthesized compounds showed significant growth inhibition with GI50 values in micromolar levels while some of the compounds were several times more potent against MCF-7 and HeLa cell lines than MIAPACA cell line. Three compounds (12a, 12d and 12e) emerged as potent compounds with broad spectrum of cytotoxic activity against all the tested cell lines with GI50 values in the range of 0.01-2.1 μM. These compounds induce microtubule depolymerization and arrests cells at the G2/M phase of the cell cycle. Moreover, compounds 12d and 12e disrupted microtubule network and accumulated tubulin in the soluble fraction in a similar manner to their parent podophyllotoxin scaffold. In addition, structure activity relationship studies within the series were also discussed. Molecular docking studies of these compounds into the colchicine-binding site of tubulin, revealed possible mode of inhibition by these compounds.

Keywords: Benzimidazole; Cytotoxicity; Molecular docking; Podophyllotoxin; Tubulin polymerization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • HeLa Cells
  • Humans
  • MCF-7 Cells
  • Molecular Docking Simulation
  • Molecular Structure
  • Podophyllotoxin / chemical synthesis
  • Podophyllotoxin / chemistry*
  • Podophyllotoxin / pharmacology*
  • Structure-Activity Relationship
  • Tubulin / metabolism*
  • Tubulin Modulators / chemical synthesis
  • Tubulin Modulators / chemistry
  • Tubulin Modulators / pharmacology*

Substances

  • Antineoplastic Agents
  • Tubulin
  • Tubulin Modulators
  • Podophyllotoxin