Recent genome reduction of Wolbachia in Drosophila recens targets phage WO and narrows candidates for reproductive parasitism

PeerJ. 2014 Aug 14:2:e529. doi: 10.7717/peerj.529. eCollection 2014.

Abstract

Wolbachia are maternally transmitted endosymbionts that often alter their arthropod hosts' biology to favor the success of infected females, and they may also serve as a speciation microbe driving reproductive isolation. Two of these host manipulations include killing males outright and reducing offspring survival when infected males mate with uninfected females, a phenomenon known as cytoplasmic incompatibility. Little is known about the mechanisms behind these phenotypes, but interestingly either effect can be caused by the same Wolbachia strain when infecting different hosts. For instance, wRec causes cytoplasmic incompatibility in its native host Drosophila recens and male killing in D. subquinaria. The discovery of prophage WO elements in most arthropod Wolbachia has generated the hypothesis that WO may encode genes involved in these reproductive manipulations. However, PCR screens for the WO minor capsid gene indicated that wRec lacks phage WO. Thus, wRec seemed to provide an example where phage WO is not needed for Wolbachia-induced reproductive manipulation. To enable investigation of the mechanism of phenotype switching in different host backgrounds, and to examine the unexpected absence of phage WO, we sequenced the genome of wRec. Analyses reveal that wRec diverged from wMel approximately 350,000 years ago, mainly by genome reduction in the phage regions. While it lost the minor capsid gene used in standard PCR screens for phage WO, it retained two regions encompassing 33 genes, several of which have previously been associated with reproductive parasitism. Thus, WO gene involvement in reproductive manipulation cannot be excluded and reliance on single gene PCR should not be used to rule out the presence of phage WO in Wolbachia. Additionally, the genome sequence for wRec will enable transcriptomic and proteomic studies that may help elucidate the Wolbachia mechanisms of altered reproductive manipulations associated with host switching, perhaps among the 33 remaining phage genes.

Keywords: Bacteriophage WO; Cytoplasmic incompatibility; Endosymbiosis; Genome evolution; Wolbachia.