Heat-stable molecule derived from Streptococcus cristatus induces APOBEC3 expression and inhibits HIV-1 replication

PLoS One. 2014 Aug 28;9(8):e106078. doi: 10.1371/journal.pone.0106078. eCollection 2014.

Abstract

Although most human immunodeficiency virus type 1 (HIV-1) cases worldwide are transmitted through mucosal surfaces, transmission through the oral mucosal surface is a rare event. More than 700 bacterial species have been detected in the oral cavity. Despite great efforts to discover oral inhibitors of HIV, little information is available concerning the anti-HIV activity of oral bacterial components. Here we show that a molecule from an oral commensal bacterium, Streptococcus cristatus CC5A can induce expression of APOBEC3G (A3G) and APOBEC3F (A3F) and inhibit HIV-1 replication in THP-1 cells. We show by qRT-PCR that expression levels of A3G and A3F increase in a dose-dependent manner in the presence of a CC5A extract, as does A3G protein levels by Western blot assay. In addition, when the human monocytic cell line THP-1 was treated with CC5A extract, the replication of HIV-1 IIIB was significantly suppressed compared with IIIB replication in untreated THP-1 cells. Knock down of A3G expression in THP-1 cells compromised the ability of CC5A to inhibit HIV-1 IIIB infectivity. Furthermore, SupT1 cells infected with virus produced from CC5A extract-treated THP-1 cells replicated virus with a higher G to A hypermutation rate (a known consequence of A3G activity) than virus used from untreated THP-1 cells. This suggests that S. cristatus CC5A contains a molecule that induces A3G/F expression and thereby inhibits HIV replication. These findings might lead to the discovery of a novel anti-HIV/AIDS therapeutic.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • APOBEC-3G Deaminase
  • Adhesins, Bacterial / chemistry
  • Adhesins, Bacterial / pharmacology*
  • Anti-HIV Agents / chemistry
  • Anti-HIV Agents / pharmacology*
  • Cell Line
  • Cytidine Deaminase / genetics
  • Cytidine Deaminase / metabolism*
  • Cytosine Deaminase / metabolism*
  • Endopeptidases / chemistry
  • Endopeptidases / pharmacology*
  • Enzyme Stability
  • Gene Expression Regulation / drug effects
  • HIV Infections / metabolism
  • HIV Infections / virology
  • HIV-1 / drug effects
  • HIV-1 / physiology*
  • Hot Temperature
  • Humans
  • Streptococcus / classification
  • Streptococcus / enzymology
  • Virus Replication / drug effects*

Substances

  • Adhesins, Bacterial
  • Anti-HIV Agents
  • Endopeptidases
  • C5a peptidase
  • APOBEC3F protein, human
  • Cytosine Deaminase
  • APOBEC-3G Deaminase
  • APOBEC3G protein, human
  • Cytidine Deaminase