Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms

Stem Cell Res Ther. 2014 Aug 28;5(4):105. doi: 10.1186/scrt493.

Abstract

Introduction: Osteoporosis is a disease characterized by low bone mineral density (BMD) and increased risk of fractures. Studies have demonstrated the use of phytoestrogens, or plant-derived estrogens, such as genistein and daidzein, to effectively increase osteogenic activity of bone marrow-derived mesenchymal stem cells (BMSCs). Herein, the effects of daidzein analogs on the osteogenic differentiation efficiency of human BMSC and adipose-derived stromal/stem cells (ASC) were explored.

Methods: BMSCs and ASCs underwent osteogenic differentiation in the presence of vehicle, 17β-estradiol (E2), phytoestrogens, or daidzein analogs. Cells were stained for alkaline phosphatase (ALP) enzymatic activity, calcium deposition by alizarin red s, and phosphate mineralization by silver nitrate. Gene expression analysis was conducted on cells treated with daidzein analogs.

Results: Cells treated with E2, daidzein, or genistein increased calcium deposition by 1.6-, 1.5-, and 1.4-fold, respectively, relative to vehicle-treated BMSCs and 1.6-, 1.7-, and 1.4-fold relative to vehicle-treated ASCs, respectively. BMSCs treated with daidzein analog 2c, 2g, and 2l demonstrated a 1.6-, 1.6-, and 1.9-fold increase in calcium deposition relative to vehicle-treated BMSCs, respectively, while ASCs treated with daidzein analog 2c, 2g, or 2l demonstrated a 1.7-, 2.0-, and 2.2-fold increase in calcium deposition relative to vehicle-treated ASCs, respectively. Additional analysis with BMSCs and ASCs was conducted in the more efficient compounds: 2g and 2l. ALP activity and phosphate mineralization was increased in 2g- and 2l-treated cells. The analysis of lineage specific gene expression demonstrated increased expression of key osteogenic genes (RUNX2, c-FOS, SPARC, DLX5, SPP1, COL1A1, IGF1, SOST, and DMP1) and earlier induction of these lineage specific genes, following treatment with 2g or 2l, relative to vehicle-treated cells. Estrogen receptor (ER) inhibitor studies demonstrated that ER antagonist fulvestrant inhibited the osteogenic differentiation of 2g in BMSCs and ASCs, while fulvestrant only attenuated the effects of 2l, suggesting that 2l acts by both ER dependent and independent pathways.

Conclusions: These studies provide support for exploring the therapeutic efficacy of daidzein derivatives for the treatment of osteoporosis. Furthermore, the patterns of gene induction differed following treatment with each daidzein analog, suggesting that these daidzein analogs activate distinct ER and non-ER pathways to induce differentiation in BMSCs and ASCs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult Stem Cells / drug effects
  • Adult Stem Cells / physiology*
  • Alkaline Phosphatase / metabolism
  • Bone Density Conservation Agents / pharmacology*
  • Bone Marrow Cells / physiology
  • Cell Differentiation
  • Cells, Cultured
  • Drug Evaluation, Preclinical
  • Estradiol / analogs & derivatives
  • Estradiol / pharmacology
  • Female
  • Fulvestrant
  • Humans
  • Inhibitory Concentration 50
  • Isoflavones / pharmacology*
  • Mesenchymal Stem Cells / physiology*
  • Osteogenesis
  • Osteoporosis / drug therapy
  • Phytoestrogens / pharmacology
  • Receptors, Estrogen / physiology*

Substances

  • Bone Density Conservation Agents
  • Isoflavones
  • Phytoestrogens
  • Receptors, Estrogen
  • Fulvestrant
  • daidzin
  • Estradiol
  • Alkaline Phosphatase