Differentiation of allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD) is important because of different management requirements. Various non-invasive tests have been used in an attempt to improve diagnosis. In irritant dermatitis, thickening of the epidermis has been a constant finding. High-Definition Optical Coherence Tomography (HD-OCT) is a non-invasive real-time three-dimensional imaging technique with cellular resolution for which an adapted algorithmic method for pattern analysis discriminating inflammatory skin diseases has been proposed. The aim of this study was threefold. (1) To evaluate the correlation between HD-OCT features and clinical scores of allergic and irritant patch test reactions. (2) To explore the potential of HD-OCT in optimizing the visual patch test scoring. (3) To assess in vivo the cytological and 3-D micro-architectural differences in skin reaction types between doubtful positive ACD and ICD. Twenty-two volunteers were patch tested using potassium(VI)dichromate, cobalt(II)chloride, nickel(II) sulfate and palladium(II)chloride. Visual patch test scoring and HD-OCT assisted patch test scoring were performed at 48 and 96 h after patch test application according to ECDRG guidelines. Selected HD-OCT features correlated well with clinical severity scores. HD-OCT assessment improved the visual patch test scoring although not significantly. Increased epidermal thickness observed in ICD at first reading was a significant finding useful in differentiating doubtful (+?) ACD from irritant (IR) ICD reactions. In conclusion, HD-OCT might be a unique tool for in vivo non-invasive real-time three-dimensional epidermal thickness measurements helping to differentiate IR from doubtful (+?) reactions in patch testing. Selected HD-OCT features corresponded well with severity of visual scoring. These features might help to quantify the degree of inflammation in inflammatory skin conditions. HD-OCT might help in optimizing visual patch test scoring in some situations.