Purpose: Trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) comprised of trastuzumab linked to the antimitotic agent DM1, has shown promising results in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Investigations of the mechanisms of the action of ADCs, including T-DM1, have been primarily descriptive or semiquantitative. However, quantitative pharmacokinetic/pharmacodynamic (PK/PD) analysis may provide insights into their complex behavior. The analyses described herein applied PK/PD modeling to nonclinical studies of maytansinoid conjugates.
Methods: The maytansinoid conjugates T-DM1 and T-SPP-DM1, with thioether and disulfide linkers, respectively, were tested in mouse efficacy, PK, and tumor uptake studies. (3)[H]DM1-bearing ADCs were used to facilitate the quantitation of the ADCs in plasma, as well as ADC and ADC catabolites in tumors. Three mechanistic PK/PD models were used to characterize plasma ADC, tumor ADC, and tumor catabolite concentrations. Tumor catabolite concentrations were used to fit tumor response. Model parameters were estimated using R software and nonlinear least squares regression.
Results: Plasma ADC-associated DM1 concentrations of T-DM1 decreased more slowly than those of T-SPP-DM1, likely due to slower DM1 release. A comparison of the mechanistic models found that the best model allowed catabolism and catabolite exit rates to differ between ADCs, that T-DM1 exhibited both faster tumor catabolism and catabolite exit rate from tumors than T-SPP-DM1; findings inconsistent with expected behavior based on the physicochemical nature of the respective catabolites. Tumor catabolite concentrations adequately described tumor response with both ADCs showing similar potency.
Conclusion: Mechanistic PK/PD studies described herein provided results that confirmed and challenged current hypotheses, and suggested new areas of investigation.