Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1

Am J Physiol Lung Cell Mol Physiol. 2014 Nov 15;307(10):L746-57. doi: 10.1152/ajplung.00166.2014. Epub 2014 Sep 12.

Abstract

Polymorphonuclear leukocyte (PMN)-mediated acute lung injury from ischemia/reperfusion (I/R) remains a major cause of morbidity and mortality in critical care medicine. Here, we report that inhaled low-dose carbon monoxide (CO) and intravenous resolvin D1 (RvD1) in mice each reduced PMN-mediated acute lung injury from I/R. Inhaled CO (125-250 ppm) and RvD1 (250-500 ng) each reduced PMN lung infiltration and gave additive lung protection. In mouse whole blood, CO and RvD1 attenuated PMN-platelet aggregates, reducing leukotrienes (LTs) and thromboxane B2 (TxB2) in I/R lungs. With human whole blood, CO (125-250 ppm) decreased PMN-platelet aggregates, expression of adhesion molecules, and cysteinyl LTs, as well as TxB2. RvD1 (1-100 nM) also dose dependently reduced platelet activating factor-stimulated PMN-platelet aggregates in human whole blood. In nonhuman primate (baboon) lung infection with Streptococcus pneumoniae, inhaled CO reduced urinary cysteinyl LTs. These results demonstrate lung protection by low-dose inhaled CO as well as RvD1 that each reduced PMN-mediated acute tissue injury, PMN-platelet interactions, and production of both cysteinyl LTs and TxB2. Together they suggest a potential therapeutic role of low-dose inhaled CO in organ protection, as demonstrated using mouse I/R-initiated lung injury, baboon infections, and human whole blood.

Keywords: ischemia/reperfusion; leukotrienes; lung; resolvins; thromboxane; transcellular eicosanoid biosynthesis.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural

MeSH terms

  • Acute Lung Injury / metabolism
  • Acute Lung Injury / pathology
  • Acute Lung Injury / prevention & control*
  • Animals
  • Antimetabolites / pharmacology*
  • Carbon Monoxide / pharmacology*
  • Cell Communication / drug effects*
  • Docosahexaenoic Acids / pharmacology*
  • Female
  • Humans
  • Leukocytes, Mononuclear / metabolism
  • Leukocytes, Mononuclear / pathology
  • Leukotrienes / metabolism*
  • Lung / metabolism*
  • Lung / pathology
  • Male
  • Mice
  • Papio
  • Pneumonia, Pneumococcal / metabolism
  • Pneumonia, Pneumococcal / pathology
  • Streptococcus pneumoniae / metabolism
  • Thromboxane B2 / metabolism*

Substances

  • Antimetabolites
  • Leukotrienes
  • resolvin D1
  • Docosahexaenoic Acids
  • Thromboxane B2
  • Carbon Monoxide