Background: Research suggests that in some patients with low back pain, lumbar belts (LB) may derive secondary prophylactic benefits. It remains to be determined, however, which patients are most likely to benefit from prophylactic LB use, and which LB design is optimal for this purpose. The objective of this study was to determine the effect of different lumbar belts designs on range of motion and lumbopelvic rhythm.
Methods: Healthy subjects (10 males; 10 females) performed five standing lumbar flexion/extension cycles, with knees straight, during a control (no belt) and four lumbar belt experimental conditions (extensible, with and without dorsal and ventral panels; non-extensible). Motion of the pelvis and lumbar spine was measured with 3D angular inertial sensors.
Results: The results suggest that adding dorsal and ventral panels to an extensible LB produces the largest lumbar spine restrictions among the four tested lumbar belt designs, which in turn also altered the lumbopelvic rhythm. On a more exploratory basis, some sex differences were seen and the sex × experimental condition interaction just failed to reach significance.
Conclusions: LB may provide some biomechanical benefit for patients with low back disorders, based on the protection that may be provided against soft tissue creep-based injury mechanisms. More comprehensive assessment of different LB designs, with additional psychological and neuromuscular measurement outcomes, however, must first be conducted in order to produce sound recommendations for LB use. Future research should also to take sex into account, with sufficient statistical power to clearly refute or confirm the observed trends.