The mechanism of myeloid dendritic cell (mDC)-mediated impaired T-cell function was investigated during human immunodeficiency virus type 1 (HIV-1) infection. HIV or gp120 were found to inhibit lipopolysaccharide-induced mDC maturation and cause defects in allogeneic T-cell proliferation, interleukin 2 and interferon γ (IFN-γ) production, and phosphorylated STAT1 expression. gp120-treated mDCs downregulated autologous T-cell proliferation and IFN-γ production against a peptide pool consisting of cytomegalovirus, Epstein-Barr virus, and influenza virus (CEF). These T-cell defects were associated with a decrease in production of the T-helper type 1-polarizing cytokine interleukin 12p70 and an increase in interleukin 23 (IL-23) production by gp120-treated mDCs. gp120-induced IL-23 upregulated suppressor of cytokine signaling 1 (SOCS1) protein in T cells, which inhibited IFN-γ production and killing of CEF-pulsed monocytes. These effector functions were recovered by silencing SOCS1 in T cells. Furthermore, we observed IL-23-induced SOCS1 binding to the IFN-γ transcription complex. These results identify SOCS1 as a novel target to improve the immune function in HIV-infected persons.
Keywords: HIV-1; IL-23; SOCS1; gp120; myeloid dendritic cells.
© The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.