Persistence and change in community composition of reef corals through present, past, and future climates

PLoS One. 2014 Oct 1;9(10):e107525. doi: 10.1371/journal.pone.0107525. eCollection 2014.

Abstract

The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa*
  • Biodiversity*
  • Climate*
  • Coral Reefs*
  • Ecosystem
  • Models, Theoretical
  • Population Density

Grants and funding

This work was conducted as part of the “Tropical coral reefs of the future: modeling ecological outcomes from the analyses of current and historical trends” Working Group (to RDG and PJE), and while RDG was a Center Fellow supported by the National Center for Ecological Analysis and Synthesis, both funded by NSF (Grant #EF-0553768), the University of California, Santa Barbara, and the State of California. The authors acknowledge additional support from NSF (OCE 04-17413 and 10-26851 to PJE and RCC, DEB 03-43570 and 08-51441 to PJE, OCE 07-52604 to RDG, OCE-1041673 for ECF, DEB 01-02544, 97-05199, EAR 92-19138, and 04-45789 to AFB), the US EPA (FP917096 to ECF and FP917199 to HMP), and a postdoctoral fellowship to MS from the UWA-AIMS-CSIRO collaborative agreement. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.