Biomimetic studies using artificial systems. IV. Biomimetic peptide synthesis by using multifunctionalized crown ethers as a novel enzyme model. A new concept in mimicking of enzyme-catalyzed bond-forming reactions

Chem Pharm Bull (Tokyo). 1989 Apr;37(4):912-9. doi: 10.1248/cpb.37.912.

Abstract

A novel approach to the mimicking of enzyme-catalyzed bond-forming reactions has been examined using multifunctionalized chiral crown ethers. In addition to the 18-crown-6 moiety as a binding site, the host have one thiol and one thio ester with an N-protected alpha-amino acid or a peptide, and have successfully achieved peptide synthesis in an enzyme-mimetic reaction mode. This new method involves the following three key reactions. (1) Intra-complex thiolysis: the host carries out the rapid intra-complex thiolysis of alpha-amino acid ester salts to form the dithioester, corresponding to the assembly of two guests by the host. (2) Amide formation: intramolecular aminolysis occurs between the bound guests to form the amide bond. (3) Peptide chain elongation: as the thiol reactive group is regenerated, the above two reactions are repeated to elongate the peptide chain. Formal turnover of the enzyme model has been demonstrated by the synthesis of a tetrapeptide derivative by the repetition of the above processes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Chemical Phenomena
  • Chemistry
  • Enzymes / metabolism*
  • Ethers, Cyclic / metabolism*
  • Models, Biological
  • Peptide Biosynthesis*

Substances

  • Enzymes
  • Ethers, Cyclic