An ultra high-pressure liquid chromatography/mass spectrometry (UHPLC/MS) separation and analysis method has been devised for open access analysis of synthetic reactions used in the production of DNA-encoded chemical libraries. The aqueous mobile phase is 100mM hexafluoroisopropanol and 8.6mM triethylamine; the organic mobile phase is methanol. The UHPLC separation uses a C18 OST column (50mm×2.1mm×1.7μm) at 60°C, with a flow rate of 0.6mL/min. Gradient concentration is from 10 to 40% B in 1.0min, increasing to 95% B at 1.2min. Cycle time was about 5min. This method provides a detection limit of a 20-mer oligonucleotide by mass spectrometry of better than 1pmol on-column. Linear UV response for 20-mer extends from 2 to 200pmol/μL in concentration, same-day relative average deviations are less than 5% and bias (observed minus expected) is less than 10%. Deconvoluted mass spectra are generated for components in the predicted mass range using a maximum entropy algorithm. Mass accuracy of deconvoluted spectra is typically 20ppm or better for isotopomers of oligonucleotides up to 7000Da.
Keywords: DNA-encoded libraries; Electrospray ionization; Mass spectrometry; Maximum entropy; Oligonucleotides; UHPLC.
Copyright © 2014 Elsevier B.V. All rights reserved.