Coprecipitation of FeCl2 and FeCl3 with aqueous ammonia was used to prepare iron oxide nanoparticles dispersible in aqueous medium. Oxidation of the particles with sodium hypochlorite then yielded maghemite (γ-Fe2 O3 ) nanoparticles which were coated with two types of coating -d-mannose or poly(l-lysine) (PLL) as confirmed by FTIR analysis. The particles were <10 nm according to transmission electron microscopy. Their hydrodynamic particle size was ∼180 nm (by dynamic light scattering). The d-mannose-, PLL-coated, and neat γ-Fe2 O3 particles as well as commercial Resovist® were used to label rat macrophages. The viability and contrast properties of labeled macrophages were compared. PLL-coated γ-Fe2 O3 nanoparticles were found optimal. The labeled macrophages were injected to rats monitored in vivo by magnetic resonance imaging up to 48 h. Transport of macrophages labeled with PLL-γ-Fe2 O3 nanoparticles in rats was confirmed. Tracking of macrophages using the developed particles can be used for monitoring of inflammations and cell migration in cell therapy.
Keywords: MRI; iron oxide; labeling; macrophages; nanoparaticles.
© 2014 Wiley Periodicals, Inc.