Temperature measurement is critical for many technological applications and scientific experiments, and different types of thermometers have been developed to detect temperature at macroscopic length scales. However, quantitative measurement of the temperature of nanostructures remains a challenge. Here, we show a new type of microthermometer based on a vanadium dioxide nanowire. Its mechanism is derived from the metal-insulator transition of vanadium dioxide at 68 °C. As our results demonstrate, this microthermometer can serve as a thermal flow meter to investigate sample heating from the incident electron beam using a transmission electron microscope. Owing to its small size the vanadium dioxide nanowire-based microthermometer has a large measurement range and high sensitivity, making it a good candidate to explore the temperature environment of small spaces or to monitor the temperature of tiny, nanoscale objects.