Normal healing of fractures is a complex process that relies heavily on a cascade of consecutive activations of immune cells and mediators. This mechanism somewhat overlaps with all processes related to bone metabolism, from the absence of unions to heterotopic ossifications and osteoporosis. We aimed to review and describe this intricate process of bone metabolism with particular focus on abnormal function and to exemplify it with a series of clinical cases which could justify their practical importance. The elbow has great potential for fracture healing but it is very sensitive to prolonged immobilization which can easily lead to intra-articular adherences and stiffness. In addition, the interosseus membrane facilitates communication between the regenerative environments when both radius and ulna are fractured. Such extensive injuries, around the proximal forearm, can lead to heterotopic ossifications and synostosis, which decrease sagittal range of motion through impingement and even block rotational movement through bone bridges. Increased knowledge and awareness of the biological mechanism of fracture healing, will have great improvement in the pharmacological adjuvant treatment of elbow injuries.