Cancer initiation and progression are governed by a complex multistep process in which successive alterations accumulate in multiple protein-coding and noncoding genes. MicroRNAs are an evolutionarily conserved class of endogenous 19- to 24-nucleotide noncoding RNAs that have been validated as key players in the balance of most cellular processes, including drug resistance. MicroRNAs change the output of protein-coding genes through posttranscriptional regulation by binding in a sequence-specific manner to the transcripts of their target genes. Resistance to therapy remains a major challenge in cancer treatment; clear solutions to this problem have yet to be found, in spite of intensive research in recent years. In this review, we explore the concept of cancer multitherapy using noncoding RNAs. We also address basic scientific questions that are related to personalized cancer treatment.