Systems biology. Conditional density-based analysis of T cell signaling in single-cell data

Science. 2014 Nov 28;346(6213):1250689. doi: 10.1126/science.1250689. Epub 2014 Oct 23.

Abstract

Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naïve and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naïve cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naïve cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / immunology*
  • Computer Simulation
  • Image Cytometry
  • Male
  • Mice
  • Mice, Mutant Strains
  • Mitogen-Activated Protein Kinase 1 / genetics
  • Receptors, Antigen, T-Cell / metabolism*
  • Ribosomal Protein S6 / metabolism
  • Signal Transduction
  • Single-Cell Analysis / methods*
  • Systems Biology / methods*
  • eIF-2 Kinase / metabolism

Substances

  • Receptors, Antigen, T-Cell
  • Ribosomal Protein S6
  • ribosomal protein S6, mouse
  • PERK kinase
  • eIF-2 Kinase
  • Mapk1 protein, mouse
  • Mitogen-Activated Protein Kinase 1