We assessed the maintenance and distribution of epithelial stem/progenitor cells after corneal reconstruction using tissue-engineered oral mucosal cell sheets in a rat model. Oral mucosal biopsy specimens were excised from green fluorescent protein (GFP) rats and enzymatically treated with Dispase II. These cells were cultured on inserts with mitomycin C-treated NIH/3T3 cells, and the resulting cell sheets were harvested. These tissue-engineered cell sheets from GFP rats were transplanted onto the eyes of a nude rat limbal stem cell deficiency model. Eight weeks after surgery, ocular surfaces were completely covered by the epithelium with GFP-positive cells. Transplanted corneas expressed p63 in the basal layers and K14 in all epithelial layers. Epithelial cells harvested from the central and peripheral areas of reconstructed corneas were isolated for a colony-forming assay, which showed that the colony-forming efficiency of the peripheral epithelial cells was significantly higher than that of the central epithelial cells 8 weeks after corneal reconstruction. Thus, in this rat model, the peripheral cornea could maintain more stem/progenitor cells than the central cornea after corneal reconstruction using oral mucosal epithelial cell sheets.