Purpose: Expression of CBL, an ubiquitin ligase, is decreased in 60% of human pancreatic ductal adenocarcinomas (PDAC) and is associated with shorter overall survival. We sought to determine how low CBL directly contributes to clinically more aggressive PDAC.
Experimental design: Human PDACs were stained for CBL, pEGFR, and EGFR. CBL-low was modeled in PDAC cells (Panc-1, L3.6pl, and AsPC-1) via transient transfection (siRNA) or stable knockdown (shRNA). Cell viability and apoptosis were measured by MTT assays and FACS. Immunoblot and a phospho-receptor tyrosine kinase (pRTK) array were used to probe signal transduction. NOD-scid-IL2Rγ(null) mice were subcutaneously implanted with PDAC or PDAC(CBL-low) cells on opposite flanks and treated with gemcitabine ± erlotinib for ≥4 weeks.
Results: There was an inverse correlation between CBL and pEGFR protein expression in 12 of 15 tumors. CBL knockdown increased PDAC resistance to gemcitabine and 5-fluorouracil (5-FU) by upregulating pEGFR (Y1068), pERK, and pAKT. A pRTK array of PDAC(CBL-low) cells revealed additional activated tyrosine kinases but all to a much lower magnitude than EGFR. Increased chemoresistance from low CBL was abrogated by the EGFR inhibitor erlotinib both in vitro and in vivo. Erlotinib+gemcitabine-treated PDAC(CBL-low) cells exhibited greater apoptosis by cleaved PARP, caspase-3, and Annexin V/PI.
Conclusions: Low CBL causes chemoresistance in PDAC via stress-induced EGFR activation that can be effectively abrogated by EGFR inhibition. These results suggest that dysregulation of ubiquitination is a key mechanism of EGFR hyperactivation in PDAC and that low CBL may define PDAC tumors likely to respond to erlotinib treatment.
©2014 American Association for Cancer Research.