This article describes a new acquisition and reconstruction concept for positive contrast imaging of cells labeled with superparamagnetic iron oxides (SPIOs). Overcoming the limitations of a negative contrast representation as gained with gradient echo and fully balanced steady state (bSSFP), the proposed method delivers a spatially localized contrast with high cellular sensitivity not accomplished by other positive contrast methods. Employing a 3D radial bSSFP pulse sequence with half-echo sampling, positive cellular contrast is gained by adding artificial global frequency offsets to each half-echo before image reconstruction. The new contrast regime is highlighted with numerical intravoxel simulations including the point-spread function for 3D half-echo acquisitions. Furthermore, the new method is validated on the basis of in vitro cell phantom measurements on a clinical MRI platform, where the measured contrast-to-noise ratio (CNR) of the new approach exceeds even the negative contrast of bSSFP. Finally, an in vivo proof of principle study based on a mouse model with a clear depiction of labeled cells within a subcutaneous cell islet containing a cell density as low as 7 cells/mm(3) is presented. The resultant isotropic images show robustness to motion and a high CNR, in addition to an enhanced specificity due to the positive contrast of SPIO-labeled cells.
Keywords: 3D radial half-echo sampling; bSSFP; off-resonant reconstruction; positive contrast; stem cell tracking.
Copyright © 2014 John Wiley & Sons, Ltd.