Self-referenced luminescence thermometry with Sm(3+) doped TiO2 nanoparticles

Nanotechnology. 2014 Dec 5;25(48):485501. doi: 10.1088/0957-4484/25/48/485501. Epub 2014 Nov 14.

Abstract

The performance of Sm(3+) doped TiO2 nanoparticles for luminescence temperature sensing was tested over a temperature range from room to 110 °C. The Sm(3+) ions were incorporated into TiO2 nanocrystals using hydrolytic sol-gel route. Microstructural characterization of the obtained material was performed using transmission electron microscopy and x-ray diffraction measurements. Luminescence emission spectra of Sm(3+) doped TiO2 nanoparticles consists of two distinct spectral regions: the high energy region associated with the trap emission of the TiO2 host, and the low energy region with well-resolved emission peaks of the Sm(3+) ions. The ratio between Sm(3+) emission and TiO2 trap emission shows strong temperature dependence, and is tested for temperature sensing. The relative sensor sensitivity was found to be higher than 1% °C(-1) over given temperature range with the maximum value of 10.54% °C(-1) at 57.5 °C. Lifetime data derived from the Sm(3+) emission decay revealed that time-resolved measurements provide comparable quality of temperature sensing as corresponding ratiometric measurements, with a maximum relative sensitivity of 10.14% °C(-1) at 66.5 °C.

Publication types

  • Research Support, Non-U.S. Gov't