We recently discovered that the Warburg effect, defined by the dramatically enhanced metabolism of glucose to pyruvate, even in well-oxygenated cancer cells, can occur as a consequence of mutations that enhance lipid biosynthesis at the expense of respiratory capacity. Specifically, mutations in the E1 subunit of either of two respiratory enzymes, pyruvate dehydrogenase (PDC) or α-ketoglutarate dehydrogenase (KGDC), change substrate specificity from the 3-carbon α-ketoacid pyruvate, or the 5-carbon α-ketoacid α-ketoglutarate, to the 4-carbon α-ketoacid oxaloacetate (OADC). These mutations result in OADC-catalyzed synthesis of malonyl-CoA (MaCoA), the essential precursor of all fatty acids. These mutants arose as spontaneous suppressors of a yeast acc1(cs) cold-sensitive mutation encoding an altered form of AcCoA carboxylase (Acc1) that fails to produce MaCoA at the restrictive temperature (16 °C). Notably, these suppressors are respiratory defective as a result of the same nuclear mutations that suppress acc1(cs). These mutants also suppress sensitivity to Soraphen A, a potent inhibitor of Acc1 activity, at normal temperature (30 °C). To our knowledge, OADC activity has never been identified in eukaryotic cells. Our results offer a novel perspective on the Warburg effect: the reprogramming of energy metabolism in cancer cells as a consequence of mutational impairment of respiration to meet the fatty acid requirements of rapidly proliferating cells. We suggest OADC activity is a common feature of cancer cells and represents a novel target for the development of chemotherapeutics.
Keywords: AcCoA carboxylase; Cancer cell metabolism; Warburg effect; α-Ketoacid dehydrogenase.
Copyright © 2014 Elsevier Ltd. All rights reserved.