Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO₂ hybrid materials synthesized by sol-gel route: in vitro evaluation

Mater Sci Eng C Mater Biol Appl. 2014 Dec:45:395-401. doi: 10.1016/j.msec.2014.09.007. Epub 2014 Sep 16.

Abstract

The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol-gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium.

Keywords: Biological response; Human mesenchymal stromal cells; Organic/inorganic hybrid material; Sol–gel; Titanium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apatites / chemistry
  • Cell Differentiation / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Coated Materials, Biocompatible / chemistry*
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects*
  • Microscopy, Electron, Scanning
  • Nanocomposites / chemistry
  • Polyesters / chemistry
  • Polymethyl Methacrylate / chemistry
  • Prostheses and Implants*
  • Spectroscopy, Fourier Transform Infrared
  • Titanium / chemistry*
  • Titanium / pharmacology
  • Zirconium

Substances

  • Apatites
  • Coated Materials, Biocompatible
  • Polyesters
  • polycaprolactone
  • Polymethyl Methacrylate
  • Zirconium
  • Titanium
  • zirconium oxide