Objectives: Treatment outcome of MDR-TB is critically dependent on the proper use of second-line drugs as per the result of in vitro drug susceptibility testing (DST). We aimed to establish a standardized DST procedure based on quantitative determination of drug resistance and compared the results with those of genotypes associated with drug resistance.
Methods: The protocol, based on MGIT 960 and the TB eXiST software, was evaluated in nine European reference laboratories. Resistance detection at a screening drug concentration was followed by determination of resistance levels and estimation of the resistance proportion. Mutations in 14 gene regions were investigated using established techniques.
Results: A total of 139 Mycobacterium tuberculosis isolates from patients with MDR-TB and resistance beyond MDR-TB were tested for 13 antituberculous drugs: isoniazid, rifampicin, rifabutin, ethambutol, pyrazinamide, streptomycin, para-aminosalicylic acid, ethionamide, amikacin, capreomycin, ofloxacin, moxifloxacin and linezolid. Concordance between phenotypic and genotypic resistance was >80%, except for ethambutol. Time to results was short (median 10 days). High-level resistance, which precludes the therapeutic use of an antituberculous drug, was observed in 49% of the isolates. The finding of a low or intermediate resistance level in 16% and 35% of the isolates, respectively, may help in designing an efficient personalized regimen for the treatment of MDR-TB patients.
Conclusions: The automated DST procedure permits accurate and rapid quantitative resistance profiling of first- and second-line antituberculous drugs. Prospective validation is warranted to determine the impact on patient care.
Keywords: DST; MGIT; TB eXiST; antibiotic susceptibility testing; antituberculous drugs.
© The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.